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In this paper, we introduce a class of measure neutral functional differential

equations of type
D[N (zt,t)] = f(z:,1)Dg(t)

through the relation with a certain class of generalized ordinary differential
equations introduced in [4] (we write generalized ODEs), using similar ideas
to those of [5]. By means of the correspondence with generalized ODEs, we
state results on the existence, uniqueness and continuous dependences of so-
lutions for our equation of neutral type. An example is given to illustrate the
correspondence.  October, 2013 ICMC-USP
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1. INTRODUCTION

During the last years, the interest in the theory of generalized ordinary differential equa-
tions (we write generalized ODEs, for short) has been increasing significantly. This interest
lies on the fact that several kinds of differential equations such as ordinary differential equa-
tions, measure functional differential equations, impulsive differential equations and also
dynamic equations on time scales can be regarded as generalized ODEs. See, for instance,
[1, 5,4, 6,17, 18, 19, 22, 23, 24, 25]. This means that these types of differential equations
can be treated via theory of abstract generalized ODEs which presents a much more simple
and friendly environment to deal with than any of the above specific setting of differential
equations.

While the theory of neutral functional differential equations is very well-known (see
(2, 3,9, 11, 12, 13, 14, 15, 16, 21, 20, 26|, for instance), the literature concerning measure
neutral functional differential equations is new.

In the present paper, we introduce a class of equations called measure neutral functional
differential equations, which we refer to simply as measure NFDEs and which encompasses
classic classes of NFDEs. Our main result (namely Theorems 4.1 and 4.2) states that,
similarly to other kinds of differential equations, measure NFDEs can also be regarded as
abstract generalized ODEs. Then, using the relation between measure NFDEs and gener-
alized ODEs, we prove results on the existence and uniqueness of solutions and continuous
dependence of solutions on parameters for our class of measure NFDEs.

The present paper is organized as follows. In the second section, we introduce some
notation and terminology involving measure NFDEs. The third section is devoted to a
short description of the basis of the theory of generalized ODEs. In the fourth section,
we describe the framework of measure NFDEs and we establish and prove a one-to-one
correspondence between a solution of a measure NFDE and a solution of a special class
of generalized ODEs. The fifth section contains an existence and uniqueness result for
measure NFDEs, using the correspondence presented in the previous section. In the sixth
section, we establish a result on the continuous dependence on the initial data of solutions of
measure NFDEs. In the last section, we provide an example of a measure NFDE, evaluate
its corresponding generalized ODE as well as its solution as present the relation between
the solutions of the two equations.

2. MEASURE NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Let tg,0,7 be given real numbers, with 0,7 > 0. The theory of neutral functional
differential equations is usually concerned with equations of type

d
&N(ytat):f(ytvt)a te [t07t0+0]7

where y:(0) = y(t + 0), for 6 € [—r,0]. The book [12] is a basic reference for this theory.
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MEASURE NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS 287

Because we would like to model real-world problems undergoing jumps or discontinuities,
we will consider the space of regulated functions from [ty — r,to + o] to R™ as our phase
space.

Let X be a Banach space and [a,b] € R be a compact interval. Recall that a function
f :[a,b] = X is regulated, provided the one-sided limits

lim f(s) = f(t—), te€(a,b], and lim f(s) = f(t+), t€ [a,b)

s—t— s—t+

exist. We denote by G([a,b], X) the space of all regulated functions f : [a,b] = X. When
endowed with the usual supremum norm

[flloc = sup [[f(®)]],
<b

a<t<

G(la,b], X) is a Banach space.

The first result we mention says that if a given function y : [t — r,tg + 0] — R™ is
regulated, then the mapping s = ||ys||oo, $ € [to,to + o], is also regulated. For a proof of
such result, the reader may want to consult [5, Lemma 3.5].

ProposITION 2.1. Ify € G([to — r,to + o], R™), then the function s — ||Ys]lec, $ €
[to, to + o], is an element of G([to,to + o], R).

In the present paper, we focus our attention on equations of the form
D [N(xtv t)] = f(xta t)ng (1)

where D[N (z¢,t)] and Dg(t) are the distributional derivatives of N(x¢,t) and g(t) respec-
tively in the sense of L. Schwartz (see the references [10, 27]). We call equation (1) a
measure neutral functional differential equation or simply measure NFDE.

The setting of functions involved in equation (1) is described next.

Let O C G([to — 7, to + o], R™) be open and consider the set

P = {yt HEVIS 07 te [tO,tO + U]} - G([—T, O]an)

Assume that f : P X [tg, to + o] — R™ is a function such that, for each y € O, the mapping
t — f(y,t) is integrable (in a sense that we will specify later) on [tg, o + o] with respect
to a nondecreasing function g : [to,to + o] = R.

We assume that N is a linear and autonomous operator which means that N(z;,t) =
N(t)x;. Therefore equation (1) can be rewritten as

D[N (t)x:] = f(2:,t)Dg. (2)

Moreover, we suppose that there is a matrix g : R x R — R™"*™ which is a mensurable
and normalized function satisfying

u(t,0) =0, 60>0; p(t,0)=npt-r), 0 < - (3)
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Also, p is a left-continuous function in 6 € (—r,0), of bounded variation on 6 € [—r, 0], and
the variation of the p on [s, 0], vars o] 4, tends to zero as s — 0, such that the operator IV
is given by

0

Nitye =0(0)~ [ dolu(t.0)0(0). (@)

—r

where ¢ € G([—r,0],R™).
Combining (2) and (4), we obtain

N@m—MWm=Aﬂ%@@@,

which implies

0

dw—/‘®mmmwu+w—am+/’@M@mwwwaéfwM$@@>

-r -r

where the integral on the right-hand side can be understood is in the sense of Riemann-
Stieltjes, Lebesgue-Stieltjes or even Kurzweil-Henstock-Stieltjes. Therefore, the integral
form of equation (2) can be written as
t 0 0
ot) = 2(0) = [ fas)dg(s) + [ dlu(t.0att+0)~ [ dlu(0.0)40).
0 —r

—-r

3. GENERALIZED ODES

Throughout this paper, we use the following definition of integral introduced by J. Kurzweil
in [18].

Consider a function ¢ : [a,b] — RT (called a gauge on [a,b]). A tagged partition of the
interval [a,b] with division points @ = sgp < 51 < ... < s = b and tags ©; € [s;—1,5i],
i=1,...,k, is called §-fine if

[Sifl,si] C (’7'1' — (5(7’1'),7'1' + 6(7’1)), 1=1,.. k.

DEeFINITION 3.1. Let X be a Banach space. A function U(7,t) : [a,b] X [a,b] = X is
called Kurzweil integrable over [a, b], if there is an element I € X such that given € > 0,
there is a gauge 0 on [a, b] such that

<g,

i [U(Ti7 s;) — U(mi, Sifl):| -1

for every d-fine tagged partition of [a,b]. In this case, I is called the Kurzweil integral of
U over [a,b] and it will be denoted by f; DU(r,t).
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MEASURE NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS 289

The Kurzweil integral has the usual properties of linearity, additivity with respect to
adjacent intervals and integrability on subintervals. See [23], for these and other interesting
properties.

The above definition generalizes the well-known Kurzweil-Henstock or Perron integral
of a function f : [a,b] — X, which is obtained by setting U(r,¢) = f(7)t. The Perron-
Siteltjes or Kurzweil-Henstock-Stieljtes integral of a function f : [a,b] — X with respect to
a function g : [a, b] — R, which appears in the definition of a measure functional differential
equation, corresponds to the choice U(7,t) = f(7)g(t) and will be denoted by f: f(s)dg(s).

The first result we describe in this section concerns the Kurzweil-Henstock-Stieltjes in-
tegral. Such result is essential to our purposes; it is a special case of Theorem 1.16 in
[23].

THEOREM 3.1. Let f : [a,b] = R™ and g : [a,b] = R be a pair of functions such that g
1s requlated and f; f(t)dg(t) exists. Then the function

W) = / £(s)dg(s), t € [a,],

1s requlated and satisfies

where AT g(t) = g(t+) — g(t) and A=g(t) = g(t) — g(t-).

The next result shows us a case when the Kurzweil-Henstock-Stieltjes integral exists. A
proof of it can be found in [23, Corollary 1.34]. The inequalities follow directly from the
definition of the Kurzweil-Henstock-Stieljtes integral.

THEOREM 3.2. If f : [a,b] = R™ is a requlated function and g : [a,b] — R is a nonde-
creasing function, then the integral f: f(t)dg(t) exists and

b b
/ f(s)dg(s) S/ £ (s)[dg(s) < [[flleolg(b) — g(a)].

As we proceed, we present the concept of a generalized ordinary differential equation
defined via Kurzweil integral. See [18, 19].

DEFINITION 3.2. Let X be a Banach space. Consider a subset O C X, a compact
interval [a,b] C R and a function G : O x [a,b] — X. Any function z : [a,b] — O is called

a solution of the generalized ordinary differential equation (we write simply generalized
ODEs)

dz
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on the interval [a, b], provided

d
:v(d)—x(c):/ DG(2(r), 1),

for every ¢,d € [a,b], where the integral is obtained by setting U(7,t) = G(x(7),t) in the
definition of the Kurzweil integral (Definition 3.1).

In order to obtain a good theory of generalized ODEs, we restrict our attention to
equations whose right-hand sides satisfy the conditions described in the next definition.
See [23].

DEFINITION 3.3. Let X be a Banach space. Consider a set O C X and an interval
[a,b] € R. If h : [a,b] — R is a nondecreasing function, we say that a function G :
O X [a,b] — X belongs to the class F(O x [a,b], h), if

|G, 52) = G(z, s1)[| < [h(s2) = h(s1)]
for all (z, s2), (z,51) € O X [a,b] and
1G(z,52) = G(x,51) = Gy, 82) + Gy, 1) || < [l =yl - |h(s2) — h(s1)]

for all ($,82)7 ($,81)7 (yaSQ)7 (yasl) € O x [aab]'

When the right-hand side of the generalized ODE (33) satisfies the above mentioned
conditions, we have the following information about its solutions. See [23, Lemma 3.12]
for a proof.

ProposITION 3.1. Let X be a Banach space. Consider an open set O C X, an interval
[a,b] C R and a function G : O x[a,b] = X. Ifx : [a,b] = O is a solution of the generalized
ordinary differential equation

dx

2D
= DG(,1)

and G € F(O x [a,b],h), then x is a requlated function.

4. MEASURE NFDE AND GENERALIZED ODES

In this section, our goal is to establish a one-to-one correspondence between solutions of
a measure NFDE of type

D[N(t)ﬂﬁt] = f(l’m t)Dg

and solutions of a class of generalized ODEs.

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



MEASURE NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS 291

In what follows, we will show that, under certain assumptions, a measure NFDE with
the following integral form

u(t) = y(to) + / F (s 5) dg(s)

0

0
+ / dolju(t, )]y (t +0) — / dylpu(to O)ly(to + ), (6)

—r —r

with a regulated solution y : [to —r,to+ 0] — R™, can be converted into a generalized ODE
of the form

dr _ DG(z,t), (7
dr
where x : [tg, tg + o] = O.
We introduce the notation [-, -, -] where
b, ifbe a,c|
[a,b,c]=(¢a, ifb<a
c, ifb>ec.

The function G : O X [tg,to + 0] — X on the right-hand side of the generalized ODE (7)
is defined by

Gy, t)(0) = F(y, t)(¥) + J(y.1)(9), (®)
where for every y € O and t € [tg, to + o] the functions F' and J are given by
[to,9.4]
Fnti®) = [ Flos)das) ©
and
J(y, 1) (V) =
- dolu(lto, 9,11, 0)]y([to, 0,1 + 0) — [ dolu(to, 0)ly(to +0). (10)

As we will verify, the relation between a solution x of the generalized ODE (7) and a
solution y of the measure NFDE (6) is described by

{yw 9 € [to — 7 t],

y(t)7 VNS [t7t0+0]7

where ¢ € [to, to+0]. As a matter of fact, we need to relate initial value problems involving
the two equations (7) and (6), their initial data and their unique solutions.
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Because we need to ensure that if y € O, then z(t) € O for every t € [to, to + o], we have
to assume a prolongation property introduced in the papers [17, 22].

DEFINITION 4.1.  Let O be a subset of G([tg — r,to + o], R™). We say that O has the
prolongation property, if for every y € O and every ¢ € [tg — 7, to + o], the function § given
by

i(t) = y(t), to—7r<t<Hd,
y(t), t<t<to+o

is also an element of O.

Here, we consider the sets O C G([to—r,to+ 0], R™) satisfying the prolongation property
and P ={y;; y € O, t € [to, to+0]} C G([—7,0],R™), and the functions f : Px[tg, to+0] —
R™ and ¢ : [to,to + 0] — R with g being nondecreasing. Furthermore, we consider the
following conditions:

(H1) The Kurzweil-Henstock-Stieltjes integral f;;+a [y, t) dg(t) exists for every y € O.

(H2) There exists a function M : [tg, tg + 0] — R which is Lebesgue-Stieltjes integrable
with respect to g such that

< [ M(s)dg(s)

to

t f(y,s)dg(s)

for every y € P and every t € [tg,to + 0]
(H3) There exists a function L : [to,to + 0] — R which is Lebesgue-Stieltjes integrable
with respect to g such that

< / L(s)ly — 2]locdg(s)

to

/ ) — £z 9)dg(s)

to

for every y,z € P and every t € [tg, to + o).
We also assume the following conditions on the normalized function g : R x R — R™*™:

(H4) w(t,-) is left-continuous on (—r, 0), of bounded variation on [—r, 0] and the variation
of u(t,-), varp o p(t,-), on [s,0] tends to zero as s — 0.

(H5) There exists a Lebesgue integrable function C : [tg, tg + 0] — R such that for every
1,82 € [to,to + o] and z € O

‘/_0 dgpu(s2,0)z(s2 +0) — /0 dopa(s1,0)2(s1 + 9)'

—_r

So 0
< / C(s) / dopa(s, 0)||2(s + 0) | ds,

-r
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In what follows, we consider an arbitrary element & € G([to — r,to + o], R™) and we
restrict our attention to the case when

O = B. = {2z € G([to — r,to + 0], R"), ||z: — Z|| < ¢},

and
P=P.={ys; y € B, t € [to,to + o]}, for c > 1.

The next lemma gives sufficient conditions for the function G given by (8) to belong to
the class F (£, h).

LEMMA 4.1. Let B, = {z € P;llzt — Z|| < ¢}, where ¢ 2 1, and P. = {y; y €
B., t € [to,to + o]}. Assume that g : [to,to + 0] = R is a nondecreasing function and
[ Be X [to, to + o] = R™ satisfies conditions (H1), (H2), (H3). Moreover, suppose the
normalized function p : R x R — R™ ™ satisfies conditions (H4) and (H5). Then the
function G : B. X [to,to + o] = G([to — 7, to + o], R™) given by (8) belongs to the class
F(B. X [to, to + o], h), where h = hy + hoy with hy, ha : [to, to + 0] = R given by

mm=/w@+M@m@

to

and

ha(t) = / C(s) varge(—r,o] (s, 0)ds (|| Z]|co + ) -

to

Proof. At first, we will proof that F' € F(B. x [to,to + k], h1).
Condition (H1) implies that the integrals in the definition of F' exist. Given y € B, and
to < 51 < s2 < tg + o, we see that

[s1,9,82]
Fm@xmmeawm:/ F(ysn5) dg(s). (1)

S1

Hence, for an arbitrary y € B, and for tg < 1 < s2 < to + o, condition (H2) implies

IF(y,s2) = F(y,s1)llec =  sup  [F(y,s2)(9) — F(y,s1)(9)]

to—r<v<toto

sup |F(y,s2) (V) — F(y, s1)(9)]

S1 <19<82

= sup
s1<9<s2

/ " M(s)dg(s) < hu(sa) — hu(51).

S1

9
/f@wwﬂﬁ

N
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Similarly, by condition (H3), if y,z € B, and to < s1 < s2 < tp + o, then

1E(y, 52)=F(y,51) = F(2,82) + F(2, 1) o
= sup [F(y,2)(9) = F(y,51)(9) = F(z,52)(0) + F(z, 1) (9)]

51<U<s2

9
— s / [F(Wer5) — F(20r )] dg(s)
81982 |J sy

T
< sup / L(3) s — 2 1o dg(s)
s1<U<s2 J s

<y — 2lloo /82 L(s)dg(s) < [ly — z[loo(ha(s2) — ha(s1))

S1

(note that the function s — ||ys — zs|leo is regulated according to Proposition 2.1, and
therefore the integral fi L(s)|lys — 2s|loo dg(s) exists). Thus F € F(B. X [to, to + o], h1).

Now, we will prove that J € F(B. x [to,to + ], he). Given z € B, and for ¢ty < 51 <
so < tg + 0, by the definition of the function J : B, X [to, tg + o] = G([to — r,to + 0], R™)
given in (10), we have

J(y, 52)(9) = J(y,51) (V) =
0 0
dop[s1, 0, 59], )]y (51,9, 2] +0) = [ dop(s1,0)]y(s1 +0), (12)

—-Tr —-T

which implies

J(z,82)(0) = J(2,51)(F) = J(y, 52) () + T (y, 51) (V) =

0
/ dolp([s1,7, s2],0)][z([s1, 0, s2] + 0) — y([51,V, s2] + 0)]

-T

0
- / doli(s1,0)][2(s1 +0) — y(s1 +0)], (13)

-Tr

for z,y € B. and tg < 51 < s9 <ty + 0.
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Hence, using (12) and condition (H5), we obtain

[J(2,82) = J(w,s1)[| = sup [ J(z,52)(9) — J(x,51)(V)]

ﬁe[to—’l‘,to-‘ro']
= sup |J(x,s2)(9) — J(x,51)()]

YE[s1,82]
0 0
= oo | [ ol 00 +0) — [ (o1, 0l +)
VE[s1,82 —r —r

So 0
<[ e [ doluts.0)lats + 0)as

-

< [“ew [ " dolu(s, 0)ds]e

o
< / C(s) / dylp(s,0))ds (|F]]oo + €) < halsz) — ha(s1).

-

Similarly, (13) implies

17 (2, 52) = J(,81) = J(y,82) + J(y, 51)
= sup |J(z,52)(0) = J(2,51)(0) = I (y, 52) () + T (y, 51) (I)]

ve [t() —r,to +(T]

= o | (2, 52) () = J (2, 51) () = J(y, 52) () + J(y, 1) (V)]

N

0
sup / o 14(9, 0)][(0 + 0) — y(0 + 0)]

V€ [s1,82]'J —r

0
~ [ dolutsr, Bl +6) 1 + 6)

< [7 ) [ daluts. 005 +0) ol + 0)las

< C(S) valge(—r,0] N(sv H)Hxs - ys”oods
s1
82

lz = yllos /-
< - 7 -
</ C(s) varge[—ro) pu(s,0)ds ( il +c (Ilz]| +¢)

2 = ylloo

EEE [ha(s2) = ha(s1)] < [|2 = ylloo[h2(s2) — ha(s1)].

~X

Therefore J € F(B. X [to, to + 0], ha).
Finally, using the fact that

G(z,t)(9) = F(z,t)(9) + J(z,t)(9),
it is clear that G € F (B, x [to,to + o], h). |
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The following statement is a slightly modified version of Lemma 3.3 from [4], which
is concerned with impulsive functional differential equations. The proof from [4] can be
carried out without any changes. Thus we omit its proof here.

LEMMA 4.2. Let B, = {z € G([to — r,to + o, R"); ||zs — Z|| < ¢}, withc > 1 and P, =
{ys; y € B, t € [to,to + o]}. Assume that ¢ € P,, g : [to,to + 0] = R is a nondecreasing
function, and f : P.x[to,to+0] = R™ is such that the integral f;ﬁg f(ys,t) dg(t) exists for
every y € P.. Moreover, suppose p: RxR — R"*™ 4s a normalized function which satisfies
conditions (H4) and (H5). Consider G given by (8) and assume that x : [to,to + 0] = Be
is a solution of

dx

— =DG(x,t

I (2,t)
with initial condition x(to)(¥) = ¢(9F) for ¥ € [to — 7, to], and x(to)(¥) = x(to)(to) for
Y € [to,to + 0. Ifv € [to,to + o] and ¥ € [ty — r,to + 0], then

and

The proofs of the following two theorems are inspired by similar proofs from papers
[5, 25].

THEOREM 4.1. Let B. = {z € G([to — r,to + o], R"); ||z — Z|| < ¢}, withc > 1, P, =
{z4; © € B, t € [to,to + 0|} ¢ € Pe, g : [to,to + 0] — R is a nondecreasing function,
f i PeXx[to, to+0] = R™ satisfies conditions (H1)-(H3). Moreover, suppose the normalized
function p: R x R — R™ "™ satisfies conditions (H4) and (H5). Let G : B, X [to, to + o] —
G([to — r,to + o], R™) be given by (8) and assume that G(z,t) € G([tg — r,to + o], R™) for
every x € B, t € [to,to + o]. Let y € P, be a solution of the measure neutral functional
differential equation

y(t) = y(to) + t f(ys,s)dg(s)
0 0
+ [ dolu(t,0)]y(t+6) — [ delu(to,0)]y(to +0) (14)

—r —r

on [to,to + o] subjected to the initial condition y, = ¢. For every t € [to — r,to + o], let
y(ﬁ)’ v e [tO - t]a

y(t), 9 €t,to+ ]
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Then the function x : [to, to + o] — B, is a solution of the generalized ordinary differential
equation

dx

Proof. We will show that, for every v € [tg, %o + o], the integral ftz DG(z(7),t) exists
and

2(v) — 2(ty) = /tUDG(:c(T),t).

Let an arbitrary € > 0 be given. Since g is nondecreasing, it can have only a finite number
of points t € [tg,v] such that A*g(t) > . Denote these points by t1,...,t,. Consider a
gauge 9 : [to, to + o] — RT such that

ty — th
5(T)<min{’“2’“, k=2,...,m}, T € [to, to + 0]

and
(5(’7’) < min{|7’—tk|7|7'—tk,1|; T E (tkfl,tk), k= 1,...,m}.

These conditions assure that if a point-interval pair (7, [c,d]) is d-fine, then [c,d] contains
at most one of the points t1, ..., t,, and, moreover, 7 = ¢, whenever t; € [c,d].
Since y¢, = x(tk),, it follows from Theorem 3.1 that

S

lim [ L(s)llys — 2(tr)slloo dg(s) = L{tr)llye, — 2(tr)e, AT g(te) =0

s—tr+ th

for every k € {1,...,m}. Thus the gauge § can be chosen in such a way that

tre+d(tk) c
L(8)||ys — 2(tr)s]loo d Cke{l,....m).
L L st o) < g ke L)
and, also,
thr(S(tk)
/tk Cs) vt oy (5, 0) s — (0o loeds < 1, B {1,

Using Theorem 3.1 again, we obtain
ly(7 +1) —y(T)|| < h(t+7) = h(7),
and, therefore,
ly(t+) —y(T)| S ATh(T) <&, 7€ [to,to+0)\{t1,- - tm}.
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Thus, we can assume that the gauge § is such that

ly(p) —y(T)|| <e

for every 7 € [to, to + o]\{t1,...,tm} and p € [7, 7+ (7)).
Now, assume that {(7;, [si—1,8i]), ¢ = 1,...,1} is a d-fine tagged partition of the interval
[to,v]. Using the definition of z, it can be easily shown that

[si—1,9,8:]
(2(s5) — 2(511)) (9) = / £ (ysr5) dg(s)

0 0
n / dolil[si-1,9. 5:], O)]y([5i-1, 0, 5:] + 6) — / A5, )y (si1 +0),
Similarly, it follows from the definition of G that
[G(e(r). 5:) — Gla(rs), 5:-1)] (9) =
[F(e(m), 81) — F(a(m), si-0)] (0) + [T 50) — T ((m), 8-1)] (9),

where
[si—1,9,51]
[F(x(73), 80) — F2(7:), 8i-1)] (9) = / f(x(7i)s,5)dg(s).

Moreover,

[J((73), 81) — J(x(73), i-1)] (V) =

/ dola(si-1, 9, s3], O))e(rs) (511, 9, 5] + )

- / A (i1, O)] (i) (551 + ).

-7

By combination of the previous equalities, we obtain
[m(sz) — x(si,l)} (9) — [G(x(ﬂ-)7 s;) — G(z(my), si,l)] ()
[si—1,9,8:]
— [ ()~ Galr)ass)) dg(s)

0
+ 3 de[p([si-1,7, i), ) (y([si-1, 7, si] + 0) — x(73) (I + 0))
— [ dolp(si—1,0)](y(si—1 +0) — x(7)(si—1 + 0)).

-Tr
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Consequently,

[2(si) — (si—1) — [G(z(7:), 5:) — G(2(73), 5i-1)] |0
= sup |[a(si) —a(sic)](0) — [G(x(7), 1) — Ga(r), si-1)] (9)]

_19€[t0*7“,t0+0]

9

= [ 109) = falm)e )] doto)
€|Si—1,8: Si—1

+ / do[ja(0, 0))(y(9 + 0) — 2(73) (9 + 0))

0
- [l 1 O wsic1 +6) = ()51 -+ )
9

< sup / [/ (e 8) — F(2(m)s 5)] dg(s)
DE€[si—1,8:] |/si—1
0
+ sup /de[uw,en(ymm—x(mww))
196[81_1,57;] —-r

- /_ do[p(si—1,0)](y(si—1 +0) — () (51 + 9))’.

By the definition of z, z(7;)s = ys whenever s < 7. Thus,

9
/ (Far5) — F(2(7)s,9)) dg(s)

0, RS [si—laTi]a
= 9 (15)
[ (09) = falm)as)) dg(s), € i)

Then, by condition (H3), we obtain

9
/_ (f(yss ) = f(x(7:)s,5)) dg(s)

9 Si
< [ Ll o)l do(s) < [ L)~ o)l dg(s)
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and, analogously, condition (H5) implies

9
/ C(s) varpe(r) 1(5, O)llys — 2(73)sloodls

O, 196 [S’i—177—i}

— 9 (16)
/ C(s) varoerro) (5, 0)1gs — a(r)sllods, 9 € 5]

Given a particular point-interval pair (74, [$;—1, s;]), there are two possibilities:

(i) The intersection of [s;_1, s;] and {t1,...,t,} contains a single point ¢ = 7.
(ii) The intersection of [s;—1,s;] and {t1,...,t,,} is empty.

Consider case (i). As it was explained before, it follows from the definition of the gauge
4 that

S; c
L - 3 g 9
| Ol = alm) e da) < 35

k3

Sq €
/n- C(s) varpe|—r,0) (8, 0)lys — 2(7i)s || cods < dm+ 1

In case (ii), we have

[ys = 2(7i)slloc = sup |ly(p) —y(m)l <&, s €m, s,
pE[Ti,s]
by the definition of the gauge 4.

Combining cases (i) and (ii) and using the fact that case (i) occurs at most 2m times,
we obtain

l
2(v) — x(to) — ¥ _[G(x(r:), 5:) — G(x(7i), 5i-1)] H

i=1

to+o to+o Ame
< e/to L(s)dg(s) + e/to C(s) varge[—pro) (s, 0)ds + Tl

tot+o to+o
<e </ L(s)dg(s) + / C(s) varge|—r,) i(s,0)ds + 1> .

to tO
Since ¢ is arbitrary, it follows that
2(0) — a(ty) = / DG(2(r), 1)
to

and we obtain the desired result. |

Now, we proof the reciprocal result.
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THEOREM 4.2. Let B. = {z € G([to — r,to + o], R"); ||z — Z|| < ¢}, withc > 1, P, =
{z¢;2 € B, t € [to,to + 0]}, & € P., g: [to,to + 0] = R be a nondecreasing function and
let f: P. X [to,to + o] — R™ satisfy conditions (H1)-(H3). Assume that the normalized
function p: R x R — R™*™ gatisfies conditions(H4) and (H5). Let G : B, X [to,to + 0] —
G([to — r,to + o], R™) be given by (8) and assume that G(z,t) € G([tg — r,to + o], R™) for
every © € B. and t € [tg,to + o]. Let x : [to,to + o] = B. be a solution of the generalized
ordinary differential equation

dx
— = DG(a,t
dT (.’E, )?
with the initial condition
¥ —t to —r < Y < 1o,
.'L'(to)('l?) — ¢( O)a 0 T 0
z(to)(to), to <V <to+o.

Then, the function y € B, defined by

J(0) = {x(toxm, to -

r <9 < to,
(0)(9), to<I<t

0+ o.

s a solution of the measure neutral functional differential equation

y(t) =y(to) + [ f(ys,s)dg(s)
/.

0
+ [ dop(t,0)y(t +0) — / dopi(to, 0)y(to +6), (7

T

yt0:¢

ont € [to—rto+ ol

Proof. The equality vy, = ¢ follows easily from the definitions of y and x(¢g). It remains
to prove that, if v € [tg, to + o], then

0

v 0
y(v) — ylto) = / £ (s 5) dg(s) + / dopi(v, 0)y(v +0) — / dpa(to, B)y(to + ).

T

But, using Lemma 4.2, we obtain

y(v) — ylto) = 2(0)(v) — 2(to)(v) = ( I DG(xm,t)) (v).

to
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Thus

v 0 0
y0) = otte) = [ Flues)dale) = [ doutt0)p(e+0)+ [ dontto,O)utta +0)

-

- < /t DG(x(T),t)) (v) — t: f(ys, s)dg(s)

- /0 dop(v,0)y(t +0) + /O dop(to,0)y(to +6). (18)

—-r —r

Let an arbitrary € > 0 be given. Since g is nondecreasing, it has only a finite number of
points ¢ € [tg,v] such that AT g(t) > e. Denote these points by t1, ..., t,.
Consider a gauge d : [tg,to + o] — RT such that

t — th
5(T)<min{’“2’”, k:z,...,m}, T € [to, to + 0]

and

O(r) <min{|T — tg|, |7 —tr=1l; T E (tk—1,tk), k=1,...,m}.

As in the proof of Theorem 4.1, these conditions assure that if a point-interval pair (7, [¢, d])
is d-fine, then [c,d] contains at most one of the points ti,...,ty, and, moreover, T = ¢,
whenever t;, € [c,d].

Again, the gauge § might be chosen in such a way that

tre+0(tk)
/ L(8)llye — 2(tx)slloo da(s) < ke {l,....m) (19)

e dm+1’

and, also,

tk+6(tk) €
[ vt o nlo0)le — alta)ullods < S, BE {Lucom) (20)

tr

According to Lemma 4.1, the function G given by (8) belongs to the class F(B. X [to, to+
a], h), where

t t
() = [ (L) + M($)dg(s) + [ Clo)varoe(-ro s, s ([l + ). (21
to to
By the definition of h given by (21), for every 7 € [to, to + o]\{t1,...,tm}, we have
Ih(r+t) — h(T)| <e.
Thus, we can assume that the gauge § satisfies

1h(p) — h(T)|| < e for every p € [r,7+ 4(T)).
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Finally, the gauge § should be such that

v 1
‘ / DG(x(7),t) — Z[G(x(n), s;) — G(x(7i), 84— 1)] <e (22)
to =1 e’}
for every d-fine partition {(7;, [s;—1, $i]),2 = 1,...,1} of [tg, v]. The existence of such a gauge

follows from the definition of the Kurzweil integral. Choose a particular J-fine partition
{(74,[8i=1,8i]),0 = 1,...,1} of [to,v]. By (18) and (22), we have

‘yw) ~y(te) - t” F(ge, ) dg(s)
0 ’ 0
— / dop(v, O)y(v +6) + / dop(to, 0)y(to + 9)’

—-r —-r

— ’(/t: DG(m(T),t)>(U) - t: f(ys,s)dg(s)

0 0
~ [ ot to+0) + / dop(to, B)y(to + 9>]
!
<e+| Z[G(x(n),si) — G(x(m), si—1) / flys,s)dg(s
0
7/ d9u(8279)y(31+0) / d@ﬂl(sz 130)(y(31 1+9)|
1
<e+ Z’ [G(2(73),8:) — G(x(7), $i-1) / f(ys,s)dg(s)

0
= [ ot O)utsi-+0) + / dop(si1,0)y(si1 +6)|.

-r

The definition of G yields

[G(x(7), 85) — G(a(73), 8i-1) / flx(my)s,s)dg(s)

- dQU(Sza 0)a(7i)(si +0) + deM(Si—la 0)a(7i)(si—1 + 0),

—r —r
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which implies
‘[G(l‘(ﬂ),s,) - G(l‘(TZ Si— 1 / f Ys, S dg )

- / dop(si, O)y(si +0) + deM(SZ—LQ)y(Si—l + 9)’

-7

x(7)s,5) dg(s / f(ys,s)dg(s)

; \ / dop(s:.0)[x(m3)(5: +0) — y(s; + 0)]

0
[ dopulsicy. 0) () (51 +0) — (sis + e)]‘.

-r

By Lemma 4.2, for every i € {1,...,1}, we have z(1;)s = x(s)s = ys for s € [s;—1, 7] and
ys = x(8)s = x(8;)s for s € [14, s;]. Thus

[ 1 @lms) = S dgts)] =

[ 5 s) = fue ) agls)

/ U @(r)er ) — F((si)er )] dg(s)

3

</ " L()l|e(r)s — 2(51)e oo dg(s).

2

where the last inequality follows from condition (H3).
Using condition (H5),
0
[ ot 0)et)s+0) = (o -+ )

0
- / dopi(sio1, O)[(m) (5101 +0) — y(sis +0)]
/ C(s) / dopa(s, 0) () (5 + 0) — y(s + 0)[ds
<

/ C(s) varoe(or) 1(5, Ol|2(r)s — aloods

Si—1

- / C(s) varge o) (5, 0)|2(73)s — yalocdls.

Again, we distinguish two cases:

(i) The intersection of [s;_1,s;] and {t1,...,t,} contains a single point ¢t = 7;.
(ii) The intersection of [s;_1, s;] and {¢1,...,tn} is empty.
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In case (i), it follows by (19) and (20) that

Sq £
— 2(r <
[l = e doe) < 325
and
Sq €
[ ) vty (o, Ol s <

These conditions imply

(66t - Glatr ] 0= [ 9ot

0 0 %
_/ dgu(8i79)y(8i+9)+/ dg,U,(Sifl,@)y(Sifl —‘r&) < A1

—r -

In case (ii), we use Lemma 3.1 to obtain the estimate
l2(si)s — 2(Ti)slloo < ll2(si) — 2(7)loo < h(si) = h(7i) <,

for every s € [r;, s;], and thus

‘ [G(x(r:),8:) — G(x(3), 5-1)] (v)
0 0

_/Si f(ys,s) dg(S)/_ d(si, 0)y(si +0) +/ dop(si—1,0)y(si—1 +0)

i —r

< E/ l L(s)dg(s) + 5/ 1 C(s) varge[—r,o) (s, 0)ds.

i

Combining cases (i), (ii) and using the fact that case (i) occurs at most 2m times, we
obtain

l

D

=1

(G(2(1:), 8:) — G(a(1:), 8i-1)] (v)

dop(si, 0)y(si +6) + dop(si—1,0)y(si—1 +0)

—-Tr

0 0
—r

-/ F(9er ) dg(s)

to+o to+o 4m5
< E/t(, L(s)dg(s) + E/t(, C(s) varge[—r,o) (s, 0)ds + ek
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Consequently,

Jo0) = tt0) = [ st0.5) oo

0 0
— [ don(w.0y(v +0) + | donlto, O)y(to +0)|
to+o to+o
<e [1 + / L(s)dg(s) —|—/ C(s) varge[—r,o) (s, 0)ds
to to

which completes the proof. |

5. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, our goal is to obtain a result on the existence and uniqueness of solutions
of measure NFDEs via the correspondence between these equations and generalized ODEs.

We start by presenting a known result concerning existence-uniqueness of solutions for
generalized ODEs. See [4, Theorem 2.15].

THEOREM 5.1. Assume that X is a Banach space, O C X open and G : O X [to, to+0] —
X belongs to the class F(O X [to,to + o], h), where h: [ty,to + o] = R is a left-continuous
nondecreasing function. If xg € O is such that xg + G(xo, to+) — G(x0,t0) € O, then there
exists 6 > 0 and a function x : [to, to + 8] — X which is the unique solution of the initial
value problem

dz
E = DG(xat)v w(tO) = Zo-

Next, we present an existence-uniqueness theorem for measure NFDEs.

THEOREM 5.2. Let B, = {z € G([to — r,to + o, R"); ||z = Z|| < ¢}, withe > 1, P. =
{x¢; © € By t € [to, to + 0]}, g : [to,to + 0] = R be a left-continuous and nondecreasing
function and let f : P, x [to, to + o] — R™ satisfy conditions (H1), (H2), (H3). Assume the
normalized function p : R x R — R"*" satisfies conditions (H4) and (H5). If ¢ € P, is
such that the function

A1) = B(t —to), t € [to—r,to],
#(0) + f(d,t0)ATg(to), t € (to,to+ 0]
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belongs to Be, then there exists 6 > 0 and a function y : [to — r,to + 0] — R™ which is the
unique solution of the initial value problem

y(t) = y(to) + / F(s5) da(s)
0 0 0

+L dgu(t,@)y(t—Fe)—/ dop(to, 0)y(to + ), (23)

T

yto = ¢

Proof. Let G be a function defined by (8). According to Lemma 4.1, this function
belongs to the class F (B, X [to, to + 0], h), where

t

h(t)=/ [M(S)+L(5)]dg(8)+/ C(s) varge(—r,0) 1(s,0)||z]|ods.

to to
Define

_ ) oW —to), V€ [to—r,tol,
zo(¥) = {QS(O), 9 € [to.to + ol.

It is clear that zg € B..

We also claim that zo + G(zo,to+) — G(x0,t0) € Be. At first, note that G(zo,t9) = 0.
The limit G(zg,to+) is taken with respect to the supremum norm and we know it must
exist since G is regulated with respect to the second variable. This follows from the fact
that G € F(B, x [to,to + o], h) and also, note that J(xg,t) = 0 by condition (H5). Thus
it is sufficient to evaluate the pointwise limit F'(xq,to+)(9) for every 9 € [to — r,to + o).
Using Theorem 3.1, we obtain

0, t€[t0—7",t0},
F(zo,to+)(9) =
f(o, to)A+g(t0)7 te (to,to + J].
Hence zg + G(xq,to+) — G(xo,t0) = xo + F(xo,ta') =z € B..
Since all the assumptions of Theorem 5.1 are satisfied, there exists § > 0 and a unique
solution x : [tg,t9 + 6] — X of the initial problem value

dx

= DG(z,t), x(to) = xo. (24)

According to Theorem 4.2, the function y : [tg — 7, tg + 6] — R™ given by

J() = {x(toxﬂ), to -

r <9 <to,
2(0)(9), to<V<t

0o+
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is a solution of the measure neutral functional differential equation

y(t) = y(to) + / F (s 3) dg(s)

0 0
+ / dop(s, 0)y(s + ) — / u(to, 0)y(to + ), (25)

—r —r

yto = ¢

This solution must be unique, otherwise Theorem 4.1 would imply that x is not the only so-
lution of the generalized ODE (24). Thus the result follows. |

6. CONTINUOUS DEPENDENCE ON PARAMETERS

In this section, we use a known result on continuous dependence of solution on parameters
for generalized ODEs in order to obtain analogous results for measure NFDEs.

We need an auxiliary result which the following Arzela-Ascoli-type result for regulated
functions which can be found in [7, Theorem 2.18].

THEOREM 6.1. The following conditions are equivalent:

1.A set A C G([a, B],R™) is relatively compact.
2.The set {z(a);x € A} is bounded and there is an increasing continuous function
7 :[0,00) = [0,00), n(0) =0 and an increasing function K : [a, 8] = R such that

[z (t2) — x(t1) ]| < n(K(t2) — K(t1))

foreveryx € A, a <t; <ty < pB.

Next, we present a result on the continuous dependence of solutions on the initial data
for generalized ODEs. Such result is a Banach space-valued version of Theorem 2.4 from
[8]. The proof for the case X = R™ from [8] remains true in this more general setting.

THEOREM 6.2. Let X be a Banach space, O C X be an open set and hy, : [a,b] — R,
k=0,1,2,..., be a sequence of nondecreasing left-continuous functions such that hy(b) —
hi(a) < ¢ for some ¢ >0 and every k =0,1,2,.... Assume that, for every k =0,1,2,...,
G : O x [a,b] = X belongs to the class F(O x [a,b], hy) and moreover

klim Gi(z,t) = Go(x,t), z€O,te]la,b,
— 00

klim Gi(z,t+) = Go(z,t+) €O, t € [a,b).
— 00

For every k = 1,2,..., let xy : [a,b] = O be a solution of the generalized ordinary differ-
ential equation
dz

E = DGk($7t)
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If there ezists a function zq : [a,b] — O such that limy_, o zk(t) = x0(t) uniformly for
t € [a,b], then xg is a solution of
dz

= DGy(z,t), t € [a,b].

We point out that Theorem 2.4 in [8] assumes that the functions Gy are defined on
O x (=T,T), where [a,b] C (=T,T), and similarly the functions hy, are defined in the open
interval (—T,T). However, it is easy to extend the functions defined on [a, b] to (—=T,T) by
letting G (x,t) = Gi(z,a) for t € (=T, a), Gi(x,t) = Gg(z,b) for ¢t € (b,T), and similarly
for hi. Note that the extended functions Gy, now belong to the class F(O x (=T, T), hg),
as assumed in [8].

Now, we are able to prove a theorem on the continuous dependence on parameters of
solutions of measure NFDEs.

THEOREM 6.3. Let B. = {z € G([to —r,to + o], R"); ||z — Z|| < ¢}, withc > 1, P, =
{z4; © € B, t € [to,to+0]}, g : [to, to+0] = R be a nondecreasing left-continuous function
and fr : P. X [to,to + 0] = R, k = 0,1,2,..., be a sequence of functions which satisfy
conditions (H1)-(H3) for the same functions L, M : [to,to+0] — R for everyk =0,1,2,....
Suppose the normalized function p, : R x R — R™ "™ satisfies conditions (H4) and (H5)
for the same function C' : [tg,to + o] — R for every k =0,1,2,.... Moreover, suppose

1.For every y € B,

lim. / Julaers) dols) = / ol 5)d)

uniformly with respect to t € [to,to + o).
2.For every y € B,

0 0
lim dopr(t, )yt +6) = / dopo(t, 0)y(t +0)

k—oo J_ _r

uniformly with respect to t € [tg,to + o].

Consider a sequence of functions ¢ € P, k=0,1,2,..., such that
lim ¢y, = oo
k—o0

uniformly in [—r,0]. Let y € B, k=1,2,..., be solutions of

t 0
y(t) = yi(to) + / Fe(w)es ) dg(s) + [ dopnlt, 0yt +0)
0 0 -
— do ek (to, 0)yk (to + 0),

-r

(yk)to = d)k

(26)
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in [to —7r,to+o]. If there exists a function yo € B, such that limy_, o yr, = yo in [to, to+0],
then yo : [to — r,to + o] = R™ is a solution of

t 0
yo(t) = wolto) + / Jo((wo)er5) dg(s) + [ dopo(t, O)wolt +6)
0 © -
— dopo(to, 0)yo(to +6),

-

(Y0)t, = o

Proof. The assumptions imply that, for every x € B, limg_,o Gr(z,t) = Go(z,t) uni-
formly with respect to t € [tg, Lo+ 0]. By the Moore-Osgood theorem, limy_, o, G (z,t+) =
Go(z,t+) for every x € B, and t € [tg, to + o). Besides, Go(x,t) € G([to — ,t0 + o], R™).

According to Lemma 4.1, G, € F(B. X [to,to + 7], h) for every k = 1,2,..., where

t

n(®) = [ ((6) + L(s)dg(o) + | Cls)vatoei-rop (s, ),

to to

for every t € [to,to + o]. Then since limy_, o Gr(z,t) = Go(x,t), we also have Gy €
.F(BC X [to,to + J],h).
Given k =0,1,2,... and ¢ € [to,to + 0], let

ye(9), O € [to—rt],

z(t)(9) = {yk(t)’ Y € [t,to + o]

According to Theorem 4.1, xj is a solution of the generalized ordinary differential equation

dx
— =D t).
dr Gk(xa )

Thus for £ =1,2,... and tg < t; <ty < tg + o, we have

0

/t S s) dg(s) + [ dopn(ta, O)ya(ts + 0)

-Tr

lyk (t2) — yr(t1)| =

0
- / dopr(t1, 0)ye(ts + 9)‘ < h(t2) = h(ty) < h(t2) — h(ty) + (t2 —t1),

-

where 7(t) =t for every t € [0,00) and K (t) = h(t) + t for every t € [to, to + o).

Note that K is an increasing function. Moreover the sequence {yx(to)}72,; is bounded.
Thus condition 2 from Theorem 6.1 is fulfilled and hence the sequence {y;}32, contains a
subsequence which is uniformly convergent in [tg,to + o]. Without loss of generality, we
can denote this subsequence again by {yx}3>,. Since (yx)t, = ¢x, it follows that {yx}>,
is, in fact, uniformly convergent in [ty — 7, to + o].
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By the definition of zj, we have

lim z(t) = xo(t)
k— o0

uniformly with respect to t € [to,to + o]. Then Theorem 6.2 implies that xg is a solution

of
dx

E = DGO(x,t)

in [to,to + o]. The proof is finished by applying Theorem 4.2, which guarantees that yg
satisfies

t 0
yo(t) = yolto) + / fol(yo)er s)dg(s) + [ daluo(t, 0)]yolt +6)

O —Tr
*L do[po(to, 0)]yo(to + 0), (28)

(yO)to = ¢0)

in [tg —r,to+0o]. 1

7. AN EXAMPLE

We now present an example which illustrates how to get a solution of a generalized
ODE, given a measure NFDE and its solution. This is done by means of the correspondence
between the equations, as provided by Section 4, computing explicitly the generalized ODE
and its solution.

Consider the Cauchy problem for the following measure neutral functional differential
equation

Dly(t) —ay(t —1)] =by(t —1)Du, t=0

(29)
Yo = ¥,
where
u(s) = s+ Hy(s), (30)
with H; being the Heaviside function concentrated at 1, i.e. H; is given by
0, ifs<1
H — I ~ b 31
1(s) {1, otherwise. (31)
The solution of (29) satisfies the integral form
t
y(t) = y(0) +ay(t — 1) —ay(-1) + / by(s — 1)du(s). (32)
0
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Fix T > 0. We want to write the measure NFDE (29) as a generalized ODE of the form

dx
=~ —DG(a,t
dT G(Iﬂ )7

(33)

where, for each ¢ € [0,7], z(t) is a function defined in the interval [—1,T].
Let G(y,t) = F(y,t) + J(y,t), with F and J defined by (9) and (10) respectively. Then
F and J are described as follows

[0,9,1]
Flo)@) = [ bus = 1)du(s) (39
J(y,t)(¥) = ay([0,9,] — 1) — ay(-1), (35)
where y(t) is defined for t € [-1,T] and ¢ € [-1,T].
Note that, for all ¢t € [0,7] and all ¥ € [-1, ], we have [0,%,¢] = 0. Therefore, for any
[-1,0

y € G([-1,T),R™), t € [0,T] and ¥ € ] we have F(y,t)(9¥) = 0 = J(y,t)(¢) and,
hence,

-
1,

/0 DG(x(7), 5)(9) = 0.

Therefore, since the integral form of (33) is

we have
z(t)(9) = 2(0)(¥) = p(9¥), te€]0,T], ¥ €[-1,0]. (36)

Since the function u is given by a Heaviside function, we have to consider three cases
which we discuss in the sequel.

Case 1. Let 0 < ¢t < 1. Suppose z is a solution of (33). We want to prove that the
corresponding y given by Theorem 4.2 satisfies the integral equation (32). In order to
compute fot DF(z(7),s) and fot DJ(z(7),s), we consider a partition 0 = sg < 81 < +++ <
$pn, =t of the interval [0, t]. For an arbitrary choice of tags 7; € [s;_1, s;], we have
[0,9,s4] [0,9,s:]
F(z(r),s:) () = / bx(1;)(s — 1)ds = / bp(s —1)ds
0 0 (37)
= @([07 197 Si]) - (ID(O)

where we used (36), since s — 1 € [—1,0]. We also have

J(2(7:), 8:)(0) = ax(7:)([0,9, 1] = 1) — az(7:)(=1). (38)
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Now, we analyze two possible cases, when ¢ < t and 9 > t.
Suppose ¥ < t. There exists some integer 0 < k < n such that ¢ € [sg_1, sx]. Therefore
the Riemann sum for the Kurzweil integral of F(z(7),t) becomes

=3 l((0, 6, 1)) — (0,9, 50-1))
= __ [£([0,9, 5:]) = ([0, 9, si-1])] + [2([0, 9, 51]) = ([0, 9, s7-1])]
+ Z [p([0,7, 5:]) — ([0, 9, 5i-1])]

For the first summand on the right-hand side of the last equality, we have ¢ > s; > s;_1.
Hence [0,9, s;] = s; and [0,9, $;-1] = s;—1. For the second summand, since 9 € [s;_1, s1],
we have [0,4,s7] =9 and [0,9, s7_1] = sy—1. For the third summand, since ¥ < s;,_1 < $;,
we have [0,9,s;] = ¥ and [0,9,s;,_1] = . Therefore the Riemann sum for the Kurzweil
integral of F(z(7),t) becomes

=p(s1-1) — ¢(s0) + ¢(I) — p(s1-1) = p(I) — »(0)

Similarly, the Riemann sum for Kurzweil integral of J(z(7),t) is
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n

D [T @ (), ) (@) = T (@(73), si-1)(9)]

i=1

=a Y [2(m)([0,9, 5] — 1) — x(3)([0, 9, 5i-1] — 1)]

i=1

=a E [2(13)([si-1,7, 85) = 1) — 2(73)(si—1 — 1)]
=1
-1

=a Y [2(ri)([si-1,9, 51] — 1) — a(7:) (851 — 1)]

+:L[33(7’[)([81_1,’L9781] —1) — (1) (s1—1 — 1)]

+ 3 () ([sim1. 0,51 — 1) — 2(7) (si—1 — 1)]

i=I+1
I—-1
:aZ[iE(Ti)(Si —1) —z(ri)(si-1 — 1)]
+alz(rr)([sr-1,9,81) = 1) — 2(77)(s7-1 — 1)]
+ > [w(m)(sic1 — 1) — 2(r)(sim1 — 1)]
i=I+1
=ax(r;) (¥ — 1) — ax(1;)(-1)
=ap(V¥ — 1) —ap(-1)

For ¥ > t, we have ¥ > s; > s;—1. Therefore [0,7,s;] = s; and [0,9,s;—1] = s;—1 and,
hence,
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Similarly, the Riemann sum for the Kurzweil integral of J(z(7),t) is given by

n

S [T((m), 5:)(9) = T((7i), si-1)(9)]

—ay [a(m)([0,9, 5] = 1) — 2(r:)((0,9, 5 1] — 1)]
=1

=a) [w(m)(si — 1) = x(ri)(si-1 — V)] = azx(m)(t — 1) — ax(r;)(~1)
i=1

=ap(t — 1) — ap(-1)

From the previous calculations, it is easy to see that the Riemann sums are independent
of the particular partition and, hence,

t [0,9,t]
/ DF(z(7),s) / bp(s — 1)ds (39)
0 0

and
/O DJ(2(r), 8) = ap([0, 9, 8] — 1) — agp(~1).
Therefore,
z(t)(9) = z(0)(9) —|—/O DF(z(7),s) —|—/O DJ(z(7),s)

[0,9,]
= o([-1,9,0]) + / bo(s — 1)ds + (0, 9, 1] — 1) — ap(—1)

=o([-1,9,t), 0<t<1l, —-1<v¥<1,
where we use again ¢ for the solution of the NFDE
d
() —ay(t = 1)) = by(t — 1). (40)
subject to the initial condition yy = ¢, whose integral form is given by
t
o(t) —ap(t—1) — ¢(0) + ap(—1) = / bp(s —1)ds, t>0. (41)
0

and can be solved by the method of steps, for instance. Note that u restricted to the inter-
val [0, 1] is the identity function. Thus du(s) = ds for s € [0,1] and (32) can be replaced
by (41).
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Case 2. Consider 1 <t < 2. Then,
[0,’(9,Sj] [O,’l9,8j]
F(z(1),s5) = / bx(r;)(s — 1)ds + / bx(1;)(s — 1)dH;(s)
0 0

[0,9,s5]
:/0 bae(ri)(s — 1)ds + byp(0)Ha (s) (42)

Computing the Riemann sum as the previous case, but taking into account the last term
in (42), we get

t [1,9,t]
/1 DF(z(7),s) = /1 bp(s — 1)ds + bp(0).

Using the same calculations for the case 0 < ¢t < 1, we obtain

/: DJ(z(1),s) = /t DJ(z(T),s) — /1 DJ(z(r),s)

0 0
= a‘ﬁ([o’ﬁ’t] - 1) - CL(p([O,ﬁ, 1] - 1)
= ap([L,7,1] — 1) — ap(0). (43)

From equations (39) and (43) and by recalling that ¢ is the solution of the NFDE (40), we
get, for t € (1,2],

[1,9,t]

z(®)(9) = p([-1,9,1]) + ! bp(s — 1)ds + ap([1,9,t] — 1) — ap(0) + bp(0)

= o([-1,0,1]) + bp(0), 1<t<2, —-1<9<2

Note that by cases 1 and 2, we can write the solution z(t) of the GODE (33), for ¢ € [0, 2],
in the following form
z(t) = z1(t) + z2(t)

where x1(t)(9) = ¢([—1,9,t]) and x2(t) = ap(0)H1([0,9,]).

By (30), we observe that, for s > 2, du(s) = ds. Therefore no jumps occur in the solution
x(t) for t > 2.

We now describe the last case.

Case 3. Consider t > 2. Using similar computations as before, we have
t
2100 =2:2)0) + ([ De(@(r),9) )
2

[2,9,t]
([-1,9,2]) + /2 bp(s — 1)ds + ap([2,9,t] — 1) — ap(1)

®
= ‘P([_lvﬂv 2]) + 90([2779775]) —p(2)
o([-1,9,¢), t>2.
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Define the function w(s) = ap(0)Hy(s), for —1 < s < 2. Also, let w be the solution of
(40) subject to the initial condition ya = wy. Then z2(t)(8) = w([-1,9,t]) for ¢ € [0,2].
Replacing y by w in the previous computations, we get

ra(0)0) = 222)(0) + (| DG(aa(r).)) )
—w(-1,0,1]), t>2.

Finally, by cases 1, 2 and 3, Now, from the three cases, for t > 0, we obtain
z(t)(0) = ([-1,9,1]) + w([-1,9,])

and a substitution of the function y(t) = ¢(t) +w(t) into the integral form (41) shows that
it is the solution of the measure NFDE (29).
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